Solving the Share-A-Ride Problem by A Matheuristic Algorithm

Mareg Marye Zegeye^{1,a,*}, Vincent F. Yu^{1,b}, Sisay Geremew Gebeyehu^{2,c}, Putu A. Y. Indrakarna^{1,d}, and Panca Jodiawan^{1,e}

¹ Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan

² Faculty of Mechanical and Industrial Engineering, Bahir Dar Institute of Technology, Bahir Dar, Ethiopia

E-mail: ^{a,*}marsweet811@gmail.com (Corresponding author), ^bvincent@mail.ntust.edu.tw, ^csisayg78@gmail.com, ^dgitong0315@gmail.com, ^epancajodiawan@gmail.com

Abstract. This research studies the share-a-ride problem (SARP) that aims to maximize profit, without violating SARP constraints, when a fleet of taxis serves a set of package and passenger requests. Based on the column generation technique, we develop a two-phase matheuristic algorithm. The first phase employs simulated annealing with mutation strategy (SAMS) algorithm to generate a set of feasible candidate routes. SAMS consists of a time-slack strategy, neighborhood moves, a mutation strategy that depends on the time-slack strategy, and a penalty mechanism for the infeasible solutions. Solving the set partitioning model in the second phase determines the final solution. We then compare the proposed matheuristic algorithm to state-of-the-art algorithms based on small and large SARP benchmark instances. For small instances, the proposed algorithm outperforms existing algorithms in terms of solution values.

Keywords: Matheuristic, Share-a-ride problem, Set partitioning formulation, Simulated annealing, Mutation strategy