A Logistic Optimization for the Blood Delivery Routing Problem in the Lower Southern Region of Thailand

Kunanon Intapan^{1,a,} Wanatchapong Kongkaew^{1,b,*}, Sakesun Suthummanon^{1,c}, Supattra Mitundee^{2,d}, and Siriphat Saranobphakhun^{2,e}

¹Department of Industrial and Manufacturing Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand

² The 12th Regional Blood Center, Khuan Lang Subdistrict, Hat Yai District, Songkhla Province 90110, Thailand

E-mail: ^akunanon2555@gmail.com, ^{b,*}wanatchapong.k@psu.ac.th (Corresponding author), ^csakesun.s@psu.ac.th, ^dsupattra.m@redcross.or.th, ^eBb_mt49@hotmail.com

Abstract. Blood delivery routes from the Regional Blood Center to hospitals requesting blood and blood products were optimized as a vehicle routing problem with vehicle time restriction constraints. Total costs of blood transportation under the activity-based costing system on the period of use of the vehicle and the traveling distance were minimized. A novel hybrid method was proposed as a combination of the firefly algorithm, a crossover operator in differential evolution and a new local search, called the HFA+NLS algorithm. A set of six generated test instances (small and medium-sized problems) and a real-world case study were used to verify the competitive performance of the proposed algorithm. Computational results revealed that the HFA+NLS algorithm gave a superior performance to other methods in the number of test instances required to successfully find the best-known solution. The HFA+NLS was effective and efficient in solving the blood delivery routing problem with vehicle time restriction constraints.

Keywords: Blood delivery routing, firefly algorithm, crossover, local search, hybrid metaheuristic